1,520 research outputs found

    Iso-array rewriting P systems with context-free iso-array rules

    Get PDF
    A new computing model called P system is a highly distributed and parallel theoretical model, which is proposed in the area of membrane computing. Ceterchi et al. initially proposed array rewriting P systems by extending the notion of string rewriting P systems to arrays (2003). A theoretical model for picture generation using context-free iso-array grammar rules and puzzle iso-array grammar rules are introduced by Kalyani et al. (2004, 2006). Also iso-array rewriting P systems for iso-picture languages have been studied by Annadurai et al. (2008). In this paper we consider the context-free iso-array rules and context-free puzzle iso-array rules in iso-array rewriting P systems and examine the generative powers of these P systems

    Shuffle on array languages generated by array grammars

    Get PDF
    Motivated by the studies done by G. Siromoney et al. (1973) and Alexan- dru Mateescu et al. (1998) we examine the language theoretic results related to shuf- fle on trajectories by making use of Siromoney array grammars such as (R : R)AG, (R : C F )AG, (C F : R)AG, (C F : C F )AG, (C S : R)AG, (C S : C S)AG and (C F : C S)AG which are more powerful than the Siromoney matrix grammars (1972) and are used to make digital pictures

    Flux jumps, Second Magnetization Peak anomaly and the Peak Effect phenomenon in single crystals of YNi2B2CYNi_2B_2C and LuNi2B2CLuNi_2B_2C

    Full text link
    We present magnetization measurements in single crystals of the tetragonal YNi2B2CYNi_2B_2C compound, which exhibit the phenomenon of peak effect as well as the second magnetization peak anomaly for H >> 0.5T (H || c). At the lower field (50mT << H << 200mT), we have observed the presence of flux jumps, which seem to relate to a structural change in the local symmetry of the flux line lattice (a first order re-orientation transition across a local field in some parts of the sample, in the range of 100mT to 150mT). These flux jumps are also observed in a single crystal of LuNi2B2CLuNi_2B_2C for H || c in the field region from 2 mT to 25 mT, which are compatible with the occurrence of a re-orientation transition at a lower field in a cleaner crystal of this compound, as compared to those of YNi2B2CYNi_2B_2C. Vortex phase diagrams drawn for H || c in LuNi2B2CLuNi_2B_2C and YNi2B2CYNi_2B_2C show that the ordered elastic glass phase spans a larger part of (H, T) space in the former as compared to latter, thereby, reaffirming the difference in the relative purity of the two samples.Comment: 11 pages, 14 figure

    Adjunct hexagonal array token Petri nets and hexagonal picture languages

    Get PDF
    Adjunct Hexagonal Array Token Petri Net Structures (AHPN) are re- cently introduced hexagonal picture generating devices which extended the Hexag- onal Array Token Petri Net Structures . In this paper we consider AHPN model along with a control feature called inhibitor arcs and compare it with some ex- pressive hexagonal picture generating and recognizing models with respect to the generating power

    Effect of sowing dates and varieties on soybean performance in Vidarbha region of Maharashtra, India

    Get PDF
    oybean production is widely fluctuating in response to agro-environmental conditions year to year in Vidarbha region. Weather variations are the major determinants of soybean growth and yield. It is also important to study the response of suitable soybean varieties to varying weather parameters. So a field investigation was carried out to study the crop weather relationship of soybean and to optimize the sowing date with different soybean varie-ties. The results revealed that soybean crop sown up to 27th MW accumulated higher growing degree days (1640.5 0C day), photothermal units (20498.1 0C day hour) and recorded significantly higher seed yield (839 kg ha-1) and biological yield (2773 kg ha-1) with maximum heat use efficiency (0.51 kg ha-1°C day-1) and water productivity (2.49 kg ha-mm-1). Later sowings i.e. 30th MW sowing caused decreased amount of rainfall and increased maximum temperature regime across the total growing period with consequently lower seed yield (530 kg ha-1), GDD (1539.2 0C day), PTU (18689.9 0C day hour), heat use efficiency (0.34kg ha-1 °Cday-1) and water productivity (2.05kg ha-mm-1). Soybean variety TAMS 98-21 recorded significantly higher seed yield (734 kg ha-1) and highest biological yield (2649 kg ha-1) with maximum heat use efficiency (0.44 kg ha-1 °C day-1), GDD (1650.5 0C day ) and water productivity (2.41 kg ha-mm-1). Thus, the results of this study illustrated the importance of early sowing with suitable variety of soybean and indicates that sowing upto 27th MW with variety TAMS 98-21 is optimum for maximizing the yield in the Akola region of Vidarbha

    Accuracy and effectualness of closed-form, frequency-domain waveforms for non-spinning black hole binaries

    Full text link
    The coalescences of binary black hole (BBH) systems, here taken to be non-spinning, are among the most promising sources for gravitational wave (GW) ground-based detectors, such as LIGO and Virgo. To detect the GW signals emitted by BBHs, and measure the parameters of the source, one needs to have in hand a bank of GW templates that are both effectual (for detection), and accurate (for measurement). We study the effectualness and the accuracy of the two types of parametrized banks of templates that are directly defined in the frequency-domain by means of closed-form expressions, namely 'post-Newtonian' (PN) and 'phenomenological' models. In absence of knowledge of the exact waveforms, our study assumes as fiducial, target waveforms the ones generated by the most accurate version of the effective one body (EOB) formalism. We find that, for initial GW detectors the use, at each point of parameter space, of the best closed-form template (among PN and phenomenological models) leads to an effectualness >97% over the entire mass range and >99% in an important fraction of parameter space; however, when considering advanced detectors, both of the closed-form frequency-domain models fail to be effectual enough in significant domains of the two-dimensional [total mass and mass ratio] parameter space. Moreover, we find that, both for initial and advanced detectors, the two closed-form frequency-domain models fail to satisfy the minimal required accuracy standard in a very large domain of the two-dimensional parameter space. In addition, a side result of our study is the determination, as a function of the mass ratio, of the maximum frequency at which a frequency-domain PN waveform can be 'joined' onto a NR-calibrated EOB waveform without undue loss of accuracy.Comment: 29 pages, 8 figures, 1 table. Accepted for publication in Phys. Rev.

    A Deterministic Improved Q-Learning for Path Planning of a Mobile Robot

    Get PDF
    This paper provides a new deterministic Q-learning with a presumed knowledge about the distance from the current state to both the next state and the goal. This knowledge is efficiently used to update the entries in the Q-table once only by utilizing four derived properties of the Q-learning, instead of repeatedly updating them like the classical Q-learning. Naturally, the proposed algorithm has an insignificantly small time complexity in comparison to its classical counterpart. Furthermore, the proposed algorithm stores the Q-value for the best possible action at a state and thus saves significant storage. Experiments undertaken on simulated maze and real platforms confirm that the Q-table obtained by the proposed Q-learning when used for the path-planning application of mobile robots outperforms both the classical and the extended Q-learning with respect to three metrics: traversal time, number of states traversed, and 90° turns required. The reduction in 90° turnings minimizes the energy consumption and thus has importance in the robotics literature
    corecore